Publication list

  1. Journal Papers
  2. Invited Reviews and Book Chapters
  3. Conference Proceedings Papers

Lectures, Seminars, Colloquium, and Conference Invited Talks


A. Journal Papers 

A.-1. Nanophotonics, Nanowires, and Nanolasers
 

  1. A. Pan, W. Zhou, E. Leong, A. Chin, R. Liu, B. Zou, C. Z. Ning, Continuous Alloy-Composition Spatial Grading and Superbroad Wavelength-Tunable Nanowire Lasers on a Single Chip, Nano Letters, 9, 784 (2009)
  2. C.Z. Ning, Nanolasers based on nanowires and surface plasmons, SPIE Newsroom article, 30 January 2009, DOI: 10.1117/2.1200901.1486
  3. D. Li, C. Z. Ning, Electrical injection in longitudinal and coaxial heterostructure nanowires: a comparative study through a three-dimensional simulation, Nano Lett. 8, pp. 4234, 2008
  1. J. Hu,Y. Liu, C. Z. Ning, R. Dutton, and S.M. Kang, Fringing field effects on electrical resistivity of semiconductor nanowire-metal contacts, Appl. Phys. Lett. 92, 083503(2008)
  2. H. Akiyama, M.Yoshita, Y. Hayamizu, S.M. Liu, M.Okano, L.Pfeiffer, K. West, P. Huai, K. Asano, T. Ogawa, C.Z. Ning, Exciton-Biexciton-Plasma crossover and formation of optical gain in quantum wires, Physica E, 40 (2008)1726
  3. N. Malkova and C.Z. Ning, Band structure and optical properties of wurtzite semiconductor nanotubes, Phys. Rev. B 75, 155407 (2007)
  4. Yuhei Hayamizu, Masahiro Yoshita, Yasushi Takahashi, Hidefumi Akiyama, C Z. Ning, Loren Pfeiffer, Ken West, Biexciton Gain and the Mott Transition in GaAs Quantum Wires,  Phys Rev Lett. 99 (2007) 167403 17995291
  5. A.V. Maslov and C.Z. Ning, Interpretation of distributed-feedback-laser spectrum using reflection properties of Bloch waves, J. Appl. Phys. 101, 053117 (2007)
  6. A. H. Chin, T. Ahn, H. Li, S. Vaddiraju, C. J. Bardeen, C. Z. Ning, M. K. Sunkara, Photoluminescence of GaN nanowires of different crystallographic orientations,Nano Letters, 7, 626 (2007)
  7. N. Malkova and C.Z. Ning, Existence and control of Shockley surface states of a one-dimensional defect chain in a photonic crystal, J. Opt. Soc. Am., B24 (2007)707
  8. N. Malkova and C.Z. Ning, Tamm surface states in a finite chain of defects in a photonic crystal, J. Phys Cond. Matt.19(2007)056004
  9. N. Malkova and C.Z. Ning, Surface states of wurtzite semiconductor nanowires with identical lateral facets: A transfer-matrix approach, Phys. Rev. B, 74, 155308(2006)
  10. S. Vaddiraju, A. Chin, A. V. Maslov, C.Z. Ning, M. Sunkara, and M. Meyyappan,  “Synthesis and Characterization of Sb-nanowires”, J. Phys. Chem., C1111(2007)7339
  11. A. Chin, S. Vaddiraju, A. Maslov, C.Z. Ning, M. Sunkara, and M. Meyyappan, Near Infrared Sub-wavelength-wire lasing”, Appl. Phys. Lett., 88, 163115 (2006)
  12. D. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. Maslov, K. Knutzen, C. Z. Ning, R. Saykally, and P. Yang, Optical routing with nanoribbons and nanowire assemblies, Proc. Nat. Acad. Sci. (USA), 102, 7800 (2005)
  13. A.V. Maslov and C.Z. Ning , Distribution of optical emission between guided modes and free-space modes in a semiconductor nanowire, J. Appl. Phys., 99, 024314 (2006)
  14. N. Malkova and C. Z. Ning, Shockley and Tamm surface states in photonic crystals, Phys. Rev. B73, 113113(2006)
  15. N. Malkova and C.Z. Ning, Photonic crystal waveguides with acute bending angles, Appl. Phys. Lett., 87, 161113 (2005)
  16. N. Malkova and C.Z. Ning, Light propagation through sharp bend coupled cavity waveguide based on two-dimensional photonic crystal, Phys. Rev. B 73, 155101 (2006)
  17. N. Malkova and C.Z. Ning, Ultrafast directional switching in photonic crystal branched waveguides using electro-optical control, J. Opt. Soc. Am., 23, 978(2006)
  18. A.V. Maslov and C.Z. Ning, Bandstructure and optical absorption of GaN nanowires grown along c-axis, Phys. Rev. B 72, 125319(2005)
  19. A.V. Maslov and C.Z. Ning, Radius-dependent anisotropy in semiconductor nanowires, Phys. Rev. B72, 161310(2005) (Rapid Communication)
  20. A. V. Maslov and C.Z. Ning, Modal gain in a semiconductor nanowire laser with anistropic band structure, IEEE J. Quant. Electron.,40,1389(2004)
  21. A.V. Maslov and C.Z. Ning, Far-field emission from a semiconductor nanowire laser , Opt. Lett. 29, 572(2004)
  22. A.V. Maslov and C.Z. Ning, Reflection of guided modes in a semiconductor nanowire laser, Appl. Phys. Lett. 83, 1237(2003)

A.2. Intersubband Transitions in Semiconductor Nanostructures (Many-Body Effects, Nonlinear Optics, Terahertz Generation)

  1. J. Li and C.Z. Ning, Induced transparency by intersubband plasmon coupling in a quantum well, Phys. Rev. Lett., 93,087402(2004)
  2. J. Li and C.Z. Ning, Effects of electron-electron and electron-phonon scatterings on linewidth of intersubband transitions in a quantum well, Phys. Rev. B70, 125309(2004)
  3. Larrabee, G. Khodaparast, J. Kono, K. Ueda, Y.Nakajima, S.Sasa, M. Inoue, K.Kolokolov, J. Li and C.Z. Ning Temperature dependence of intersubband transitions in InAs/AlSb quantum wells , Appl. Phys. Lett., 83, 3936(2003)
  4. J. Li and C.Z. Ning, Interplay of collective excitations in quantum well intersubband resonances, Phys. Rev. Lett., 91,097401(2003)
  1. J. Li, K. Kolokolov, C.Z. Ning, D. Larrabee, G. Khodaparast, J. Kono, M.Karasaki, K. Ueda, S. Sasa, and M. Inoue, Microscopic modeling of intersubband resonances in InAs/AlSb quantum wells, Physica E, 20,268(2004)
  2. J. Li and C.Z. Ning, Collective excitations in InAs quantum well intersubband transitions, Physica E 22, 628(2004)
  3. J. Li and C.Z. Ning, Many-body effects on intersubband resonances in narrow InAs/AlSb quantum wells, Physica E 20,264(2004)
  4. A. Liu and C.Z. Ning, Near-infrared laser pumped intersubband THz laser gain in InGaAs-AlAsSb-InP quantum wells, Appl. Phys. Lett., 76,1984 (2000).
  5. A. Liu, S.C. Chuang, and C.Z. Ning, Piezoelectric Field Enhanced Second Order Optical Nonlinearities in Wurtzite GaN/AlGaN Quantum Wells, Appl. Phys. Lett., 76,333(2000).
  6. A. Liu and C.Z. Ning, Exiton Absorption in semiconductor quantum wells driven by a strong intersubband pump field, J. Opt. Soc. Am. B, 17,433 (2000).
  7. A. Liu and C.Z. Ning, Terahertz optical gain based on intersubband transitions in optically pumped semiconductor quantum wells: Coherent pump-probe interactions, Appl. Phys. Letts., 75, 1207(1999).

                                                                                          
A.3. Physics, Theory, and Simulation of Semiconductor Lasers

  1. A. Maslov and C.Z. Ning, “Interpretation of distributed-feedback-laser spectrum using reflection properties of Bloch waves”, J. Appl. Phys., 101 (2007)053117
  2. P.M. Goorjian and C.Z. Ning, Ultrafast beam self-switching by using coupled vertical-cavity surface-emitting lasers, J. Modern Optics, 49,707(2002).
  3. C.Z. Ning, Self-sustained ultrafast pulsation in coupled VCSELs, Optics Lett, 27, 912(2002).
  4. C.Z. Ning, Ultrafast narrow bandwidth modulation of VCSELs, SPIE-Proceedings, 4646, (2002).
  5. J. Li, S. Cheung, and C.Z. Ning, Static and dynamic effects of lateral carrier diffusion in semiconductor lasers, SPIE-Proceedings, 4646, 293(2002).
  6. J. Li, S. Cheung, and C.Z. Ning, Theory and simulation of self- and mutual-diffusion of carrier and temperature in semiconductor lasers, SPIE-Proceedings, 4283,267(2001).
  7. P. Goorjian, C.Z. Ning, and G. Agrawal, Spatial dynamics of VCSEL arrays, SPIE-Proceedings, 4283, 287(2001).
  8. C.Z. Ning and P. Goorjian, Ultrafast directional beam switching in coupled VCSELs, J. Appl. Phys., 90, 497(2001).
  9. C.Z. Ning and P.M. Goorjian, Microscopic modeling and simulation of transverse-mode dynamics of vertical-cavity-surface emitting lasers, in Special Issue on Spatial and Polarization Dynamics of Semiconductor Lasers, J. Opt. Soc. Am., B, Nov. 1999.
  10. P.M. Goorjian and C.Z. Ning, Transverse mode dynamics of VCSELs through space-time domain simulation, Optics Express, 5, 55-63, (1999).
  11. T. Roessler, R. A. Indik, G. K. Harkness, J. V. Moloney, C. Z. Ning, Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers, Phys. Rev. A, 58, 3279 (1998).
  12. J.V. Moloney, A. Egan, C.Z. Ning, and R.A. Indik, Spontaneous spatiotemporal instabilities in current modulated mass oscillator power amplifier lasers, IEEE Photon. Techn. Letts. 10, 1229 (1998).
  13. C. Z. Ning, S. Bischoff, S.W. Koch, G. Harkness, J.V. Moloney, W.W. Chow, Microscopic Modeling of VCSELs: many-body interactions, plasma heating, and transverse dynamics, Optical Engineering, 37, 1175 (1998).
  14. C.Z. Ning, J.V. Moloney, A. Egan, and R.A. Indik, A first-principles fully spce-time resolved model of a semiconductor laser model, Quantum and Semiclassical Optics, 9, 681 (1997).
  15. P.M.W. Skovgaard, J.G. McInerney, J.V. Moloney, R.A. Indik, and C.Z. Ning, Enhanced stability of MFA-MOPA semiconductor lasers using a nonlinear, trumpet shaped flare, IEEE Photon. Techn. Letts., Vol. 9, p. 1220 (1997).
  16. J.V. Moloney, R.A. Indik, and C.Z. Ning, Full space-time simulation for high brightness semiconductor lasers, IEEE Photon.Techn. Lett., 1997, Vol. 9, pp. 731-733 (1997).
  17. A.  Egan, C.Z. Ning, J.V. Moloney, and R.A. Indik, M.Wright, D.J. Bossert, and J.G. McInerney, Dynamics instabilities of MFA-MOPA semiconductor lasers, IEEE J. Quant. Electron., Vol. 34, p. 166 (1998).
  18. C.Z. Ning, R.A. Indik, and J.V. Moloney, Effective Bloch Equations for Semiconductor Lasers and Amplifiers, IEEE J. Quant. Electron., Vol. 33, p. 1543 (1997).

 

A.4. Bandstructure, Spintronics, and Many-Body Effects in Semiconductor Nanostructures

  1. K. Kolokolov, J. Li and C.Z. Ning, K-P Hamiltonian without spurious-state solutions, Phys. Rev. B, 68, 161308 (R)(2003)
  2. K. Kolokolov and C.Z. Ning, Doping induced typw-II to type-I transition and interband optical gain in InAs/AlSb quantum wells, Appl. Phys. Lett., 83, 1581(2003)
  3. A. Liu, S.C. Chuang, and C.Z. Ning, Piezoelectric Field Enhanced Second Order Optical Nonlinearities in Wurtzite GaN/AlGaN Quantum Wells, Appl. Phys. Lett., 76,333(2000).
  4. A. Liu and C.Z. Ning, Exciton absorption in semiconductor quantum wells driven by a strong intersubband pump field, J. Opt. Soc. Am., B17, 433 (2000).
  5. C.Z. Ning, Partial and total alpha parameters in semiconductor optical devices, Appl. Phys. Lett., 72, 1887 (1998).
  6. C.Z. Ning, W.W. Chow, D.J. Bossert, R.A. Indik, and J.V. Moloney, Influence of unconfined states to optical properties of semiconductor quantum well laser structures, IEEE J. Special Topics in Quant. Elect. Semiconductor Lasers, Vol. 3, p. 129 (1997).
  7. M. Wu and C.Z. Ning, A novel mechanism for spin dephasing due to spin-conserving scatterings, Eur. Phys. J. B18, 373(2000).
  8. M.W. Wu and C.Z. Ning, The Dyakonov-Perel effect on spin decohrence in n-type GaAs, Phys. Stat. Sol. B222, 523(2000).

 

   A.5. Hot Carrier Effects in Semiconductors

  1. J. Li and C.Z. Ning, Plasma heating and ultrafast semiconductor laser modulation through a terahertz heating field, Journal of Applied Physics, 88, 4933(2000).
  2. C.Z. Ning, S. Hughes and D.S. Citrin, Ultrafast modulation of semiconductor lasers through a terahertz field, Appl. Phys. Letts., 75, 442(1999).
  3. T. Roessler, R. A. Indik, G. K. Harkness, J. V. Moloney, C. Z. Ning, Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers, Phys. Rev. A, 58, 3279 (1998).
  4. C. Z. Ning, S. Bischoff, S.W. Koch, G. Harkness, J.V. Moloney, W.W. Chow, Microscopic Modeling of VCSELs: many-body interactions, plasma heating, and transverse dynamics, Optical Engineering, 37, 1175 (1998).
  5. C.Z. Ning and J. V. Moloney, Thermal effects on threshold of vertical- cavity surface-emitting lasers: first and second order phase transitions, Opt. Lett. 20, 1151 (1995).
  6. C.Z. Ning and J. V. Moloney, Plasma-heating induced intensity-dependent gain in semiconductor lasers, Appl. Phys. Lett., 66, 559 (1995). 
  7. C.Z. Ning, R. Indik, and J.V. Moloney, A self-consistent approach to thermal effects in vertical-cavity surface-emitting lasers, J. Opt. Sci. Am., B12, 1993 (1995).

 

  A.8. Carrier Diffusions and Transport in Semiconductors

  1. C.Z. Ning and J. Li, Many-Body Effects in a Laterally Inhomogeneous Semiconductor Quantum Well, Phys. Rev. B, Rapid Communication, 65,201305(R), (2002).
  2. J. Li and C.Z. Ning, A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers: I. Microscopic Approach, Phys. Rev. A. 66,023802(2002)
  3. J. Li and C.Z. Ning, A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers: II. Numerical Results, Phys.  Rev. A., 66,023803(2002)

 

  A.9. Nonlinear Dynamics and Laser Physics

  1. C.Z. Ning and H. Haken, Eliminations of variables in simple laser equations, Appl. Phys. 55 B, 117 (1992)
  2. G. Hu, C.Z. Ning and H. Haken, Distribution of subcritical Hopf bifurcations and regular and chaotic attractors in optical bistable systems, Phys. Rev., A41, 3975 (1990).
  3. G. Hu, C.Z. Ning and H. Haken, Codimension 2 bifurcations in single mode optical bistable sytems, Phys. Rev., A41, 2702 (1990). 
  4. C.Z. Ning and H. Haken, Multistabilities and Anomalous Swicthing in the Lorenz-Haken Model, Phys.Rev, A41, 6577 (1990). 
  5. C.Z. Ning and H. Haken, Detuned lasers and the complex Lorenz equations: sub- and supercritical Hopf bifurcations, Phys. Rev, A41, 3826 (1990).
  6. C.Z. Ning and H. Haken, Generalized Ginzburg-Landau equation for self- pulsing instability in a two-photon laser, Z. Phys. B77, 163 (1989). 
  7. C.Z. Ning and H. Haken, Instability in degenerated two-photon running wave laser, Z. Phys. B77, 157 (1989).
  8. C.Z. Ning, Normal forms for generalized Hopf bifurcations, J. Phys. A21, L491 (1988).
  9. C.Z. Ning, Instability in degenerated two-photon running wave laser with detuning, Z. Phys. B71, 247 (1988).
  10. C.Z. Ning, Qualitative analysis of stabilities of stationary solutions of two-mode laser equations, Shaanxi Phys., 1985

 

   A.10. Geometric (Berry’s) Phase in Nonlinear Dissipative Systems
 

  1. C.Z. Ning and H. Haken, The geometric phase in nonlinear dissipative systems, (an invited review), Mod. Phys. Lett. B6, 1541(1992).
  2. C.Z. Ning and H. Haken, An invariance property of the geometrical phase and its consequence in detuned lasers, Z. Phys. B89, 261 (1992).
  3. C.Z. Ning and H. Haken, Geometrical phase and amplitude accumulations in dissipative systems with cyclic attractors, Phys. Rev. Lett., Vol. 68, 2109 (1992).
  4. C.Z. Ning and H. Haken, Phase anholonomy in dissipative optical systems with periodic oscillation, Phys. Rev., A43, 6410 (1991).
  5. C.Z. Ning and H. Haken, Quasiperiodicity involving twin oscillations in the complex Lorenz equations describing a detuned laser, Z. Phys. B81, 457 (1990).
  6. C.Z. Ning and H. Haken, Detuned lasers and the complex Lorenz equations: sub- and supercritical Hopf bifurcations, Phys. Rev, A41, 3826 (1990).

  A.11 Two-Photon Lasers

  1. C.Z. Ning, Two-photon lasers based on intersubband transitions in semiconductor nanostructures, Phys. Rev. Lett., 93, 187403 (2004)
  2. C.Z. Ning and H. Haken, Generalized Ginzburg-Landau equation for self- pulsing instability in a two-photon laser, Z. Phys. B77, 163 (1989). 
  3. C.Z. Ning and H. Haken, Instability in degenerated two-photon running wave laser, Z.Phys. B77, 157 (1989).

 

A.12 Statistical Physics and Stochastic Resonance

  1. T. Ditzinger, C.Z. Ning, and G. Hu, Resonant-like responses of  autonomous nonlinear systems to white noise, Phys. Rev. E 50,  3508 (1994).
  2. G. Hu, Th. Ditzinger, C.Z. Ning, and H. Haken, Stochastic resonance without external signal, Phys. Rev. Lett., Vol. 71, 807 (1993).
  3. M.I. Dykman, H. Haken, G. Hu, D.G. Luchinsky, R. Mannella, P.V.E. McClitock, C.Z. Ning, N.D. Stein, and N.G. Stocks, Linear response theory in stochastic resonance, Phys. Lett., A180, 332 (1993). 
  4. G. Hu, H. Haken, and C.Z. Ning, A study of stochastic resonance without adiabatic elimination, Phys. Lett., A172, 21 (1992).
  5. G. Hu, H. Haken, and C.Z. Ning, Nonlinear response effects in stochastic resonance, Phys. Rev. E 47, 2321 (1993).
  6. C.Z. Ning and G. Hu, The exact stationary solution of the Fokker-Planck equation and generalized Potential for non-equilibrium systems without detailed balance", Commun. Theor. Phys. Vol.16, 415 (1991).
  7. J.Y. Zhang, C.T. Zhou, and C.Z. Ning, Fokker-Planck-like equation for multi-variable nonlinear systems, Shaanxi Physics (in Chinese), No.1-2, 13 (1988).

 

A.13 Inverse Problem, and Other Topics

  1. G. Hu, C.Z. Ning, and H. Haken, Inverse problem and the singularity of the integration kernel, Phys. Lett. A205, 130 (1995).
  2. G. Hu, C.Z. Ning, and H. Haken, Inverse problem with a dilated kernel containing different singularities, Phy. Rev. E, Vol. 54, 2384 (1996).

 

B. Invited Review Papers and Book Chapters

  1. A.V. Maslov and C.Z. Ning, “GaN nanowire lasers”, in Nitride Semiconductor Devices: Principles and Simulation, J. Piprek (ed.),  Wiley-VCH Verlag GmbH & Co, Weinheim, 2007
  2. C.Z. Ning and J. Li, Effects of collective excitations and scatterings in quantum well intersubband transitions (Invited Paper), SPIE Proceedings,5352, 284(2004)
  3. J. Li, K. Kolokolov, C.Z. Ning, D. Larrabee, G. Khodaparast, J. Kono, M.Karasaki, K. Ueda, S. Sasa, and M. Inoue, Intersubband transitions in InAs/AlSb quantum wells (Invited paper), in Progress in Semiconductors II: Electronic and Optoelectronic Applications, MRS Proceedings,744, 571 (2003)
  4. J.V. Moloney, R.A. Indik, C.Z. Ning, and A. Egan, Space-time simulation of high brightness semicondcutor lasers, (Invited paper) SPIE-Proceedings, Vol. 2994, 562 (1997).
  5. C. Z. Ning, R. A. Indik, J.V. Moloney, W.W. Chow, A. Girndt, S.W.  Koch, R. Binder, Incorporating many-body effects into modeling of semiconductor lasers and amplifiers, (Invited paper), SPIE-Proceedings, Vol. 2994, 666 (1997).

 

C. Conference Proceedings

  1. J. Li and C.Z. Ning, Dynamics of semiconductor quantum well laser under sub-terahertz electrical field modulation, in Ultrafsat Electronics and Optoelectronics OSA TOPS, (2001).
  2. C. Z. Ning, Temperature induced alpha factor, SPIE-Proceedings, Vol. 3283 (1998).
  3. C.Z. Ning and H. Haken, Instabilities in nonlinear optical systems due to an abrupt change of parameters, in Proceedings of the Nonlinear Dynamics in Optical Systems, eds. N.B. Abraham, E. Garmire and P. Mandel, Opt. Soc. Am., 1990.
  4. C.Z. Ning, R. Indik, J.V. Moloney, and S. W. Koch, Effects of plasma and lattice heating in VCSELs, SPIE-Proceedings, p. 617, Vol. 2399, Physics and Simulation of Optoelectronic Devices III, Eds. W. Chow and M. Osinski, (1995).
  5. J. Li, S. Cheung, and C.Z. Ning, Static and Dynamic Effects of Lateral Carrier Diffusion in Semiconductor Lasers, SPIE-Proceedings, Vol. 4646, (2002).
  6. J. Li, S. Cheung, and C.Z. Ning, Theory and simulation of self- and mutual diffusion of carrier density and temperature in semiconductor lasers, SPIE-Proceedings, Vol. 4283, 267(2001).
  7. A.V. Maslov and C.Z. Ning, Size reduction of a semiconductor nanowire laser using metal coating, SPIE Proceed. Vol.64681 (2007)
  8. Hu, Jun; Liu, Yang; Maslov, Alex; Ning, Cun-Zheng; Dutton, Robert; Kang, Sung-Mo, Simulation of p-n junction properties of nanowires and nanowire arrays, Proceedings SPIE, Vol.6468, pp., 64681E (2007)
  9. N. Malkova and C.Z. Ning, Control of light propagation through sharp bend waveguide based on two-dimensional photonic crystal, Photonic Crystal Materials and Devices, Proc. SPIE, Vol. 5733, 159 (2005)
  10. A.V. Maslov and C.Z. Ning, Modal properties of semiconductor nanowires for laser applications, SPIE Proceedings, 5349, 24 (2004)
  11. P. Goorjian, C.Z. Ning, and G. Agrawal, Simulation of spatial dynamics in a vertical-cavity surface-emitting laser arrays, Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Diegest (Optical Society of America, Washington DC, 2000), pp. 380-382.
  12. P.M. Goorjian, C.Z. Ning, and G.P. Agrawal, Transverse mode dynamics of VCSELs undergoing current modulation, SPIE-Proceedings, Vol. 3944, pp. 284-291 (2000).
  13. P.M. Goorjian and C.Z. Ning, Transverse Mode Dynamics of VCSELs through Space-Time Simulations, SPIE-Proceedings, Vol. 3625, pp. 395-401 (1999), P. Blood et al., Eds..
  14. P. Skovgaard, J. McInerbey, J.V. Moloney, R.A. Indik, C.Z. Ning, Modeling of master oscillator-power amplifier(MOPA) semiconductor laser, SPIE- Proceedings, Vol. 2994, 801 (1997).
  15. A. Liu and C.Z. Ning, Optical control of intersubband absorption in a multiple quantum well-embedded semiconductor microcavity, SPIE-Proceedings, 3944,353(2000).
  16. J. Li and C.Z. Ning, Microscopic theory and simulation of quantum well intersubband absorption: a three-subband model, SPIE Proceedings, 5349, 95 (2004)
  17. J. Li, K. Kolokolov, and C.Z. Ning, Microscopic modeling of intersubband optical processes in type-II semiconductor quantum wells: linear absorption, SPIE Proceedings,4986, (2003)
  18. A. Liu and C.Z. Ning, Difference-frequency generation of terahertz wave and optical gain in Sb-based quantum wells pumped by near-infrared lasers, in Nonlinear Optics: Materials, Fundamentals, and Applications, OSA Technical Digest (Optical Society of America, Washington DC, 2000), NLO-2000, pp. 56-58.
  19. J.Z. Li and C.Z. Ning, Many-body effects on bandgap, effective masses, and alpha factor, SPIE-Proceedings, Vol. 3944, pp. 311-317 (2000).
  20. K.Kolokolov, J. Li, and C.Z. Ning, Spurious-state free solutions of k-p Hamiltonian for heterostructures, SPIE Proceedings, Vol. 4986 (2003)
  21. C.Z. Ning, Validity of the relation between Spontaneous and Stimulated Emissions in Semiconductors, SPIE-Proceedings, Vol. 3625, pp. 622-632(1999)
  22. C.Z. Ning and H. Haken, Phase anholonomy and quasiperiodicity in optical systems with intensity pulsations, in Nonlinear Dynamics and Quantum Phenomena in Optical Systems, eds. R. Vilaseca and R.Cobanla, Springer Proceedings in Physics (1991). 
  23. C.Z. Ning and Ji-Yue Zhang, Instabilities and phase transitions in two- mode lasers with saturable absorber, I. The model and its deterministic treatment, Digest of the Third International Laser Science Conference, USA, Bull. Am. Phys. Soci., Sept., 1987.
  24. C.Z. Ning, Instabilities and phase transitions in two-mode lasers with saturable absorber, II. The Fokker-Planck Equation Treatment, Digest of the Third International Laser Science Conference, Bull. Am. Phys. Soci., Sept., 1987.

 

Lectures, Seminars, and Invited Talks

  1. Surface plasmonic and nanowire lasers, Seminar at Leibnitz Institute of Solid State Physics and Material Sciences, Dresden, Germany, March 25, 2009
  2. Semiconductor nanolasers with nanowire and plasmonic waveguides, Keynote talk (Haupt Vortrag) at German Physical Society Spring Meeting, Dresden, March 23, 2009
  3. Surface plasmonic and nanowire lasers, Seminar at Institute of Semiconductor Physics, Technical University of Berlin, March 20, 2009
  4. Nanophotonics devices: from nanowires, nanopillars, to plasmonic shells, Canada-Europe-US Space Nanotechnology Workshop 2009, Panel Speaker, March 1-6, 2009, NASA Ames, US
  5. Nanolasers Based on Nanowires and Surface Plasmons, LEOS Distinguished Lecture, Center for High Technology Materials, University of New Mexico, Dec 18, 2008
  6. Plasmonic Semiconductor Nanolasers, Molecular Foundry User Workshop, Nov.10-11, 2008, Lawrence Berkeley National Lab, CA
  7. Surface Plasmonic and Nanowire Nanolasers: Approaching Ultimate Size Limit of Lasers, North Carolina State University, Sept.25, 2008
  8. Surface plasmonic and nanowire lasers, IEEE/LEOS Dingquished Lecture at Japan Chapter, Tokyo Institute of Technology, July 24, 2008
  9. Semiconductor nanolasers: Is there an end of miniturization? NTT Basic Research Labs, Atsugi, Japan, July 29, 2008
  10. Widegap Semiconductor Nanowires (I, II), Lectures at Widegap Semiconductor Workshop and Summer School, Dalian, China, July 30-Aug.6, 2008
  11. Nanowires and Nanolasers: What is the Ultimate Size Limit, IEEE/LEOS Distinguished Lecture at Hong Kong Chapter, Hong Kong University of Science and Technology,  May 27, 2008
  12. Surface Plasmon and Nanowire Based Lasers:  What is the Ultimate Size Limit?   University of Hong Kong Engineering Distinguished Lecture Series, May 26, 2008
  13. Nanowire and Plasmonic Nanolasers: A Process of Endless Size Reduction, Colloquium at Nanjing University Physics Department, Nanjing, China, June 2, 2008  
  14. Surface Plasmonic and Nanowire Lasers : What is the Ultimate Size Limit, IEEE/LEOS Distinguished Lecture and Colloquium at Electronic Engineering Department, Shanghai Jiaotong University, June 3, 2008
  15. Nanowire-based Nanophotonics, Invited Speaker at IEEE San Francisco Bay Area Nanotechnology Council Annual Synposium, Sunyvale, May 20, 2008
  16. Surface Plasmon and Nanowire Based Lasers:  What is the Ultimate Size Limit?   LEOS Distinguished Lecture and Colloquium at National Taiwan University, May 30, 2008
  17. Surface Plasmonic and Nanowire Lasers: Approaching True Nanolasers, Seminar at Institute of Microelectronics, Fudan University, June 4, 2008
  18. Surface Plasmonic and Nanowire Lasers : Approaching Ultimate Size Limit, Seminar at Department of Electronic Engineering, Tsinghua University, China, June 6, 2008  
  19. Surface Plasmonic and Nanowire Lasers: What is the Ultimate Size Limit of a Nanolaser? Colloquium at China National Center for Nanoscience and Technology, Beijing, June 6, 2008
  20. Nanolasers: Approaching the Ultimate Size Limit, Colloquium at Institute of Optics, University of Rochester, NY, April 11, 2008
  21. Nanowires and Nanolasers, how small can a laser be? LEOS Distinguished Lecturer, Corning/Rochester Chapter, Corning, NY, April 10, 2008 
  22. Semiconductor Nanowires and Metallic Structures for Nanolasers, LEOS Distinguished Lecturer, San Diego Chapter, University of California at San Diego, CA, March 7, 2008
  23. Semiconductor nanowire based nanolasers and light emitting diodes, Seminar at Phillips Research Lab, Eighoven, Netherland, Oct 26, 2007
  24. Nanolasers: Approaching the Ultimate Size Limit, LEOS Distinguished Lecturer, Colorado Chapter, March 20,2008 
  25. Nanowires and Nanolasers, how small can a laser be? LEOS Distinguished Lecturer,  IEEE/LEOS Santa Clara Chapter, Sunyvale, CA, Dec 13, 2007 
  26. Nanolasers: toward the ultimate size limit of a laser, Invited talk at International Symposium: Synergetics: self-organization principles in animate and inanimate world, In honor of Hermann Haken on the ocassion of his 80th birthday, Oct 22-24, 2007, Bad Honnef, Germany
  27. Nanowires and Nanolasers, how small can a laser be? LEOS Distinguished Lecturer, Benelux Chapter, Technical University of Eidhoven, Netherland, Oct 25, 2007 
  28. Semiconductor Nanowires with and without Metal Shell: What is the Ultimate Size Limit of a Nanolaser?, Invited talk at international Workshop on Nano-Optoelctronics (iNOW), Beijing, China, July 29-Aug 11, 2007
  29. Nanowires and Nanolasers, how small can they be? LEOS Distinguished Lecturer, LEOS Hangzhou Chapter, Zhejiang University, China, July 26, 2007 
  30. Nanolasers: How small can they be?, Invited Talk at Nano and Giga Challenges in Electronics and Photonics, March 12-16, Tempe, Arizona
  31. Semiconductor nanowire based optoelectronic devices, Nanotechnology and Embeded System Research, Motorola, Tenpe, AZ, Dec. 15, 2006
  32. Compound Semiconductor Nanowires as Nanolasers: Theory and Experiment, Invited talk at International Symposium of Compound Semiconductors, Aug 13-17, 2006, Vancourver, CA
  33. Nanowire based nanophotonics and nanolasers: progress in theory and experiment, Plenary talk at 13th Conference on Optical Properties of Condensed Matter, Aug. 4-9, 2006, Xiamen, China
  34. Some aspects of many-body effects on optical gain in semiconductor lasers, Institute of  Solid State Physics (ISSP), University of Tokyo, June 26, 2006
  35. Nanowires as Nanolasers and NanoLEDs, Invited talk, Physics and Simulation of Optoelectronic Devices, Photonics West, Jan 23, 2006
  36. Nanowire-based nanophotonics and nanolasers, Seminar at City University of Hong Kong, China, Jan 16, 2006
  37. Nanophotonics Modeling and Simulation, Seminar Electrical Engineering Department, Arizona State University, December 8, 2005
  38. Nanowire-based Nanophotonics and Nanolasers, Seminar at Arizona State University, Oct 14,2005
  39. Nanotechnology and Education, Invited talk at IEEE Conference on Emerging Technologies, Singapore, Jan 11, 2006
  40. An Overview of Some Recent Progress in Nanotechnology, Joint Colloquim of SIMTech and ASME Singapore Chapter,  SIMTech, Singapore, Jan 11, 2006
  41. Semiconductor Nanowire Nanolasers, Invited talk at IEEE Conference on Emerging Technologies, Singapore, Jan 11, 2006
  42. Modeling of compound semiconductor nanowires as nanolasers and nanoLEDs, Invited talk at American Institute of Chemical Engineers Annual Meeting, Cincinnati, OH, Oct 30-Nov 5, 2005
  43. Nanowire based Nanophotonics and Nanolasers, Seminar at Electrical Engineering Department, Arizona State University, Oct. 14, 2005
  44. Three Lectures at International Institute of Advanced Study on Semiconductor Nanostructures, Beijing, China, Aug. 2-10, 2005
  45. Induced Transparency, Two-photon lasing in asymmetrical quantum wells with 3 subbands, International Workshop on Intersubband Transitions in Quantum Wells (ITQW’05), Cape Cod, MA September 11-16, 2005
  46. Semiconductor Nanowires as Nanolasers, Berkeley Nanosciences and Nanoengineering Institute Seminar, University of California at Berkeley, Feb 4, 2005  
  47. Possibility of two-photon lasing using intersubband transitions in semiconductor nanostructures, 35th Conference of Physics of Quantum Electronics, Snowbird, UT, Jan. 2-7, 2005  
  48. Modeling and Simulation of Semiconductor Nanowire Lasers, Seminar at Institute of Semiconductors, Chinese Academy of Science, Nov 10, 2004
  49. Modal Properties of a Nanolaser, SEMICONDUCTOR AND ORGANIC OPTOELECTRONIC MATERIALS AND DEVICES, APOC 2004, Beijing, Nov 9-11, 2004  
  50. Is a two-photon laser feasible using intersubband transitions in semiconductor nanostructures ?, Conference of Physics and Simulation of Optoelectronic Devices, Photonics West, San Jose, CA, Jan. 22-27, 2005  
  51. Four Lectures on Modeling of Semiconductor Lasers, International Summer School on Semiconductor Lasers, August, 2004, Wales
  52. Computational Nanosciences and Nanotechnology, Lawrence Livermore National Lab, September 8, 2004  
  53. Computational Nanophotonics and Optoelectronics ,University of California at Santa Cruz, May, 2004  
  54. Modeling and Simulation of Semiconductor Nanowire Lasers , 4th International Conference, Numerical Simulation of Optoelectronic Devices, Santa Barbara, CA, August 24-26, 2004  
  55. Effects of collective excitations and scatterings on dephasing and spectral lineshape in quantum well intersubband transitions, Conference on Ultrafast Phenomena in Semiconductors and Nanostructure Materisla VIII, Jan 28, 2004  
  56. Many-body effects and lineshape of intersubband transitions in semiconductor quantum wells, Institute for Quantum Engineering, Science and Technology (iQEST) Seminar, University of California, Santa Barbara, Sept. 10,2003  
  57. Many-body effects and lineshape of intersubband transitions in semiconductor quantum wells, Institute of Solid State Physics, Tokyo University, July 9, 2003
  58. Intersubband transitions in InAs/AlSb quantum wells, Tohoku University, Sendai, Japan, July 10, 2003  
  59. Intersubband transitions in InAs/AlSb quantum wells, Osaka Institute of Technology, Osaka, Japan, July 11, 2003  
  60. Many-body effects in intersubband transitions, ECE Department, Rice University, Jan 2003  
  61. Optical transitions in InAs/AlSb quantum wells , MRS Fall Meeting, Boston, MA, Nov. 2002  
  62. Microscopic Foundation and Simulation of Coupled Density-Temperature Diffusion Equations in Semiconductor Laser ,Second International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices, Zurich, September 25, 2001  
  63. Space-Time domain modeling and simulation of VCSELs under DC- and AC-Pumping", PIERS 2000, Boston MA, July 5-14, 2000.  
  64. Ultrafast Modulation of Semiconductor Lasers by a Terahertz Field", Seminar at Stanford Free-Electron-Laser Center March 9, 2000.  
  65. Plasma heating and ultrafast modulation of semiconductor lasers under THz field, Conference 3940 on " Ultrafast Phenomena in Semiconductors IV", Photonics West, San Jose, CA, Jan. 22-27, 2000.  
  66. From Many-Body Physics to Advanced Semiconductor Laser Design, Physics Colloquium, Washinton State University, Oct. 12, 1999.  
  67. Raman Effects, Exiton Effects, and CW-Terahertz Gain in Intersubband Transitions, Seminar in Physics Department, Washington State University, Oct. 11, 1999.  
  68. Transverse Modes in Vertical Cavity Surface Emitting Lasers, Hewlett Packard Co., San Jose, CA, Sep. 20, 1999.  
  69. Transverse Mode Dynamics in Vertical-Cavity Surface-Emitting Lasers, International Workshop on Dynamics of Semiconductor Lasers, Berlin, Sept. 8-11, 1999.
  70. Incorporating Many-body Effects into Space-time Domain Simulation of Semiconductor Lasers, Institute for Theoretical Physics, University of Muenster, Sept. 7, 1999.  
  71. Modeling and Simulation of Transverse Mode Dynamics in Vertical-Cavity Surface-Emitting Lasers (VCSELs), Integrated Photonics Research Conference (IPR'99), July 19-23, Santa Barbara, 1999.
  72. Theory, Modeling, and Simulation of Semiconductor Lasers, Feb. 4, 1998, Joint Physics and Mathematics Colloquium, Brigham-Young University, Utah.
  73. A First-principles aproach to semiconductor laser modeling, International Workshop and Summer School on Fundamentals and Modeling of Lasers and Ultra-short Pulse Interactions, Cork, Ireland, 20-25 July, 1997.  
  74. A Microscopic Approach to Space-time dynamics of semiconductor Lasers, International Symposium at Max-Planck Institute Stuttgart in honor of Hermann Haken's Birthday, July 17-18, 1997.
  75. Microscopic Modeling of Semiconductor Lasers, Philipps University Marburg, July 14, 1997.  
  76. Incorporating many-body effects into modeling of semiconductor lasers and amplifiers, Photonics West, Feb. 10-14, 1997, San Jose, CA
  77. Full space-time simulation of semiconductor lasers, Photonics West, Feb. 10-14, 1997, San Jose, CA.  
  78. Geometric and Dynamical phases in nonlinear dissipative systems, Lecture given at Beijing Normal University, Beijing, China Feb, 1993.  
  79. Geometric Phases in Quantum and Classical systems, Seminar at International Center for Theoretical Physics, July, 1992, Trieste, Italy.  
  80. Geometrical Phases in detuned lasers, Seminar at Max-Planck Institute for Quantum Optics, Munich, Germany, July 1991.